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In this study, we develop and compare new and existing methods for computing the mag-
netic interactions between paramagnetic particles in magnetorheological (MR) fluids. The
commonly employed point-dipole methods are outlined and the inter-particle magnetic
forces, given by these representations, are compared with exact values. An alternative
finite-dipole model, where the magnetization of a particle is represented as a distribution
of current density, is described and the associated computational effort is shown to scale as
OðNÞ. As the dipole moments and forces given by this model depend on the length scale of
the current distribution, a sensitivity analysis is performed to reveal a proper choice of this
length scale. While the dipole models give a good estimation of the far-field interactions, as
two particles come into contact, higher order multipoles are needed to properly resolve
their interaction. We present the exact two-body calculation and describe a procedure to
include the higher multipoles arising in a pairwise interaction into a dipole model. This
inclusion procedure can be integrated with any dipole or higher-multipole calculation.
Results from relevant three-body problems are compared to exact solutions to provide
information as to how well the inclusion procedure performs in simulations of self-assem-
bly and estimating the yield strength of structures.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Superparamagnetic particles, ranging from 0.3 to 10 lm in diameter, suspended in a liquid will aggregate to form chains
when an initially random dispersion is placed in a uniform, static magnetic field. The formation of these fibrous structures
changes the bulk rheological properties of the medium and as such these suspensions are typically referred to as magneto-
rheological fluids (MR) [1]. Traditionally, MR fluids have been employed in a variety of damping and shock absorbing devices
where the particle volume fractions for the suspensions range from 20% to 40%. In this context, the particles are usually car-
bonyl iron powders suspended in oil and are subject to strong magnetic fields, in excess of 105 A/m. Such MR fluids differ
from ferrofluids [2] that consist of colloidal suspensions of nanoscale ferromagnetic particles, typically single domain mag-
netite crystals 10 nm in diameter. In ferrofluids, the particles have a surfactant coating that prevents permanent aggregation
and Brownian motion is very significant, inhibiting the formation of particle structures. More recently, superparamagnetic
particles and the structures that they form have been employed in a variety of micro-fluidic devices. These monodisperse
polymeric spherical particles containing randomly oriented magnetite crystals are key components in recently developed
DNA separation chips [3] and micro-mixers [4]. Small groups of particles can be manipulated to form micro-pumps in a
channel [5], or joined together to a produce magnetic filament [6,7] that provides the propulsive mechanism for an artificial
micro-swimmer [8,9].
. All rights reserved.
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Regardless of the application, a simulation of micron-sized paramagnetic particles requires the computation of the hydro-
dynamic, magnetic, Brownian, and possible surface forces between the beads. When considering suspensions of many beads,
these forces need to be addressed through thoughtful modeling to provide an accurate description of the physics using com-
putationally efficient algorithms. In this study, we concern ourselves with models of the magnetic interactions between
paramagnetic particles that have a low magnetic susceptibility and exhibit minimal hysteresis. We further limit our discus-
sion to cases where the magnetization of a particle responds linearly to the applied field. This assumption suffices for the
magnitudes of magnetic field employed in micro-fluidic applications mentioned above, for lab-on-a-chip devices [10] or
structured materials [11], and over a certain range for standard MR fluids [12].

For a linearly susceptible material, an exact computation of the magnetic interactions involves generating the solution to
Laplace’s equation subject to the appropriate boundary conditions [13,14]. The force on a given bead is then determined by
formulating the Maxwell stress tensor from the resultant field and integrating the normal projection of this tensor over the
bead’s surface. This process is rather cumbersome and is only viable when considering systems of very few particles in sym-
metric configurations [15]. As a result, only dipole–dipole interactions are usually considered in simulations and in theoret-
ical studies of MR fluids [16–19]. Such point-dipole methods require two steps. First, the values of the induced dipole
moments for each particle need to be determined. Depending on the number of particles, this calculation can require solving
a large system of linear equations. Once the dipole moments are computed, the resulting interparticle magnetic forces can be
evaluated. This calculation requires depleted sums to avoid self-singular terms and scales inherently as OðN2Þwhere N is the
number of particles.

Although dipole simulations illustrate the general behavior of the aggregates, a more detailed description of the magnetic
interactions is necessary to accurately quantify chain deformation and yield strengths in micro-fluidic devices. Beyond the
point-dipoles description mentioned above, Ly et al. [20] have employed a combination of fast multipole methods (FMM)
and boundary integral computations to resolve the magnetic interactions in two-dimensional systems. Far-field interactions
can be handled efficiently by FMM [21], where the domain is divided into cells and the effects of source terms in a distant cell
are represented by a summed multipole series based on the moments of these source terms. Other models have been devel-
oped to simulate the interactions between dielectric particles in electrorheological (ER) fluids. Klingenberg et al. [22,23]
determined the field resulting from two dielectric spheres in a uniform field from which they constructed an interparticle
force function. With this functional form of the force, a molecular dynamics type of simulation was performed. Bonnecaze
and Brady [24–26] approached the problem by constructing an approximate grand capacitance matrix. The matrix relates
the multipole moments of each particle to the electric potential and its derivatives evaluated at the particles’ locations,
and aims to capture both the many-body, dipole interactions and the local two-body, higher multipole interactions. From
this matrix, the electrostatic energy density is determined and differentiated to obtain the interparticle forces.

The purpose of this study is twofold. First, we develop a new model to accelerate the calculation of many-body dipole
interactions. In this model, each bead’s magnetization is represented as a finite distribution of current density. This elimi-
nates the need for depleted sums to avoid singular self-interaction terms. For a sufficiently large number of particles the
computational complexity scales as OðNÞ where N is the number of particles. The finite nature of the distributions allows
the model to be implemented with a variety of numerical algorithms or in combination with FMM solvers. Second, we pres-
ent the exact solution to the two-body problem and introduce a technique to blend this result with a many-body dipole cal-
culation. This inclusion procedure is general and can be used in conjunction with the finite dipole method presented here or
any other dipole or higher-order multipole method.

To begin, we state the general magnetostatic problem that all the models address. We summarize and describe the point-
dipole models commonly used in MR fluid simulations. The interparticle forces given by these dipole methods are compared
to exact calculations. We then formulate and present the finite-dipole model through exact solutions to Maxwell’s equations
and establish an iterative method to solve for particle interactions. The exact two-body calculation is described and from this
calculation the far-field modification procedure is explained and implemented in a series of three-body problems.
2. Magnetostatic problem

Consider N spheres of radius a and permeability l located YðnÞ; n ¼ 1; . . . ;N, and subject to a uniform magnetic field H0.
Since the fluid phase is assumed to have zero susceptibility, the permeability of fluid is that of free space, l0. Further, if there
are no free currents in the system, Maxwell’s equations [13,14] are
$ � B ¼ 0; ð1Þ
$�H ¼ 0 ð2Þ
with the magnetic flux density B ¼ l0H in the fluid and B ¼ lH in each sphere. Eq. (2) allows the introduction of the scalar
potentials such that H ¼ �$Uout in the fluid phase and H ¼ �$UðnÞin inside sphere n for n ¼ 1; . . . ;N. From the relationships
between B and H and (1), we arrive at Laplace’s equation for the fluid and particle phases,
r2Uout ¼ 0; ð3Þ
r2UðnÞin ¼ 0: ð4Þ
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For a coordinate system whose origin is located at YðnÞ, we define rn ¼ x� YðnÞ with rn ¼ jrnj and r̂n ¼ rn=rn. At the surface
of each sphere, the conditions
r̂n � ðBout � BinÞ ¼ 0; ð5Þ
r̂n � ðHout �HinÞ ¼ 0 ð6Þ
require the potential satisfy
UðnÞin ¼ Uout; ð7Þ

l
oUðnÞin

orn
¼ l0

oUout

orn
ð8Þ
at rn ¼ a for n ¼ 1; . . . ;N. Additionally, as rn !1
Uout ! �H0 � rn: ð9Þ
After solving for the potential and computing the field, the Maxwell stress tensor, given in index notation by
Tij ¼ l0HiHj �
l0

2
dijHkHk ð10Þ
is formed from the exterior field with H ¼ Hout and the resultant force on bead n is determined from the surface integral
Fn ¼ a2
Z 2p

0

Z p

0
T � r̂n sin hn dhn d/n; ð11Þ
where hn and /n denote the zenith and azimuth angles respectively for the spherical coordinate system whose origin is lo-
cated at YðnÞ. The general solution to (3) can, in principle, be written down as a sum of the potential due to the external mag-
netic field and the sum of N spherical harmonic expansions, where the expansion for the nth particle has the origin located at
YðnÞ. The complications arise through application of the boundary conditions (7) and (8) when one must truncate the expan-
sions retaining L multipoles and relate the different coordinate systems to each other. Even if this is done successfully, one is
left with, in general, an unwieldy linear system of equations to determine the unknown coefficients in each expansion. All
the models presented are, in some way, a reduction of this general problem. Each model is classified not only by the degree
to which the particles interact (dipole, quadrupole, etc.) but also by how many particles are involved in each interaction
(two-body, three-body, etc.).
2.1. Fixed dipole model

The simplest and most commonly used model is the fixed dipole model. In this model, only the magnetization induced by
the external field is considered. Thus, the basis of this model is the solution to the general problem described for a single,
isolated particle (N ¼ 1). The coordinate system is aligned so H0 ¼ H0ẑ. Symmetry conditions impose the lack of azimuthal
dependence of the solution and the boundary conditions eliminate terms other than the P1ðcos hÞ term in the spherical har-
monic expansion. The solution is, see [14],
Uin ¼ �H0
3l0

lþ 2l0
r cos h; ð12Þ

Uout ¼ �H0r cos hþ H0a3 l� l0

lþ 2l0

cos h
r2 : ð13Þ
For a linearly susceptible material, the induced magnetic dipole density M ¼ vHin, with v ¼ l=l0 � 1. The dipole moment,
m, is therefore
m ¼
Z

sphere
Md3x ¼

Z
sphere

vHin d3x ¼ 4
3
pa3veff H0; ð14Þ
where veff ¼ 3v=ðvþ 3Þ. The field resulting from second term in (13) is equal to that due to a point dipole of strength m lo-
cated at the sphere’s center. Therefore, in the fixed dipole model, the field due to bead n is
Hdipðx� YðnÞÞ ¼ 1
4p

3m � ðx� YðnÞÞ
r5 ðx� YðnÞÞ �m

r3

 !
ð15Þ
with r ¼ jx� YðnÞj. The force on the point dipole m due to field H is given by [13]
F ¼ l0$ðm �HÞ: ð16Þ
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Thus, for an ensemble of N spheres each having dipole moment m, the resulting force on bead n due to the other beads is
a

Fig. 1.
normal
of the e
the dire
FðnÞ ¼ l0$YðnÞ m �
XN

k¼1;k 6¼n

HdipðYðnÞ � YðkÞÞ
 !

: ð17Þ
Note that in (17) a depleted summation necessary to avoid self-singular terms. The applied field, H0, itself does not exert
any force on the beads since the gradient of this field is zero.
2.2. Mutual dipole model

In the fixed-dipole model, only the external field was considered in the calculation of the dipole moments of the beads.
The mutual dipole model allows for the fields of the other beads to contribute to the magnetization of the bead under con-
sideration. This model is equivalent to providing a solution of the N-sphere problem with spherical harmonic expansions
truncated at the dipole level, L ¼ 1. Therefore, each sphere behaves as though isolated and immersed in a field whose
strength is equal the sum of the external field and the fields due to the other beads evaluated at the sphere’s center. Con-
sequently, the dipole moment of bead n is
mðnÞ ¼ 4
3
pa3veff H0 þ

XN

k¼1;k 6¼n

HðkÞdipðY
ðnÞ � YðkÞÞ

 !
: ð18Þ
In (18), the field HðkÞdip is provided by (15) with dipole moment m ¼mðkÞ. The dipole moments are unknown quantities and
Eqs. (15) and (18) provide the 3N � 3N linear system of equations needed to determine the dipole moments. Once the dipole
moments have been found the force on sphere n is then
FðnÞ ¼ l0$YðnÞ mðnÞ �
XN

k¼1;k 6¼n

HðkÞdipðY
ðnÞ � YðkÞÞ

 !
: ð19Þ
To discuss the accuracy of the fixed and mutual dipole models, we compare the force between two spheres in a uni-
form field given by these models with the exact solution. The exact solution is provided by the calculation described in
Section 4. In Fig. 1(a), we plot the force as a function of separation distance with the applied field parallel to the line
of centers. In Fig. 1(b), the applied field is perpendicular to the line of centers. In both of these two plots l=l0 ¼ 2 and
v ¼ 1. It should be noted that when the field is aligned with the line of centers, the force is attractive whereas when it
is perpendicular, the force is repulsive. As one expects, the mutual dipole model performs better than the fixed dipole
model. Both models, however, break down as the particles come into contact and the neglected higher multipoles become
important. Figs. 2(a) and (b) show the same configurations with l=l0 ¼ 5. As compared with the l=l0 ¼ 2 cases, the dif-
ference in the force given by the dipole models and the exact calculation is much more severe at separations less than
three radii.

Other examples involving sets of three particles or eight particles are discussed later in the paper.
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3. Finite-dipole model

We have presented two dipole models commonly used to handle the magnetic interactions between paramagnetic beads.
Both the fixed-dipole and mutual dipole models required an OðN2Þ pairwise calculation to determine the interparticle forces
and to determine the dipole moments, in the case of the mutual dipole model. In this section, we present a new dipole model
based on finite distributions of current density. Such a model is easily handled by many numerical techniques and readily
adapts to confined geometries where boundary conditions on the magnetic field need to be imposed. Also, the finite nature
of the resulting field eliminates the need for exclusive sums that are present in the other models due to the self-induced sin-
gular terms.

3.1. Finite-dipole model: single particle

To begin, we discuss how to represent a given magnetization by a distribution of current. First, consider a distribution of
current density sources, J, in a vacuum. For this situation, Maxwell’s equations are
$ � B ¼ 0; ð20Þ
$�H ¼ J; ð21Þ
B ¼ l0H: ð22Þ
Eq. (20) allows us to introduce the vector potential, A, such that B ¼ $� A. The choice of the Coloumb gauge, $ � A ¼ 0, and
the remaining two equations, (21) and (22), reveal
r2A ¼ �l0J: ð23Þ
Now, consider a system absent of any current sources, but where an induced magnetization, M is present. Here, Maxwell’s
equations give
$ � B ¼ 0; ð24Þ
$�H ¼ 0; ð25Þ
B ¼ l0ðHþMÞ: ð26Þ
We again introduce the vector potential, A and substitute the expression for B into the above equations and find
r2A ¼ �l0$�M: ð27Þ
By comparing (23) and (27), we can represent the magnetization M by a current distribution J by requiring J ¼ $�M. The
current density distribution associated with a point dipole located at the origin is [27]
JdðxÞ ¼ $�mdðxÞ: ð28Þ
We wish to to remove the singularity while maintaining the localized nature of the distribution. To do this, we replace the
Dirac delta function with a smoothly varying Gaussian function
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DðxÞ ¼ ð2pr2Þ�3=2 expð�r2=2r2Þ: ð29Þ
Therefore, our current density is now
JD ¼ $�mDðxÞ ð30Þ
and we are left with solving
r2AD ¼ �l0JD: ð31Þ
The solution to (31) is
AD ¼ l0
m� x

r
G0ðrÞ ð32Þ
with the functions GðrÞ and its derivative G0ðrÞ given by, see [28],
GðrÞ ¼ � 1
4pr

erf
r

r
ffiffiffi
2
p

� �
; ð33Þ

G0ðrÞ ¼ 1
4pr2 erf

r

r
ffiffiffi
2
p

� �
� r

r

� � 2
p

� �1=2

expð�r2=2r2Þ
" #

: ð34Þ
Rewriting (32) as
A ¼ l0m� $G ð35Þ
and using the fact that r2G ¼ DðxÞ, the magnetic field H ¼ $� A=l0 is then evaluated as,
HDðxÞ ¼mDðxÞ � $ðm � $GðrÞÞ ð36Þ
or, explicitly,
HDðxÞ ¼
1

4p
3m � x

r5 x�m
r3

� �
erf

r

r
ffiffiffi
2
p

� �
þ m�m � x

r2 x
� �

þ ðm� 3m � x
r2 xÞ r

r

� �2
� �

DðxÞ: ð37Þ
In (37), the second term decays exponentially fast, and the dipole field is achieved once r=r is large enough that
erfðr=r

ffiffiffi
2
p
Þ is close to one. The vector potential contours associated with (37) and those corresponding to a point dipole

are depicted in Fig. 3. We notice the finite-dipole current distribution smoothes out the field in the region near the origin.
Physically, the finite-dipole current distribution can be thought of as a current loop whose finite radius is represented by the
size of the Gaussian envelope, r.

Since this model is to be applied to particles of finite size, the ratio of a=r will determine how well the field just outside
the bead is resolved. In Fig. 4(a) and (b), we compare profiles of the magnetic field generated by finite-dipole current distri-
butions of different r with those of a point dipole field. Naturally, the approximation of the point dipole improves as we de-
crease the size of the Gaussian envelope, with the size ratio a=r ¼ 4 resolving nearly all the field at any distance from the
surface of the sphere. Also, we observe the resolution of the field along the x-axis for a given a=r is worse than along the y-
axis.
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ig. 3. Vector potential contours for a point dipole (—) and a finite-dipole current distribution (– – –) with r ¼ 1. In both cases m ¼ ð0;1;0Þ.
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3.2. Mutual finite-dipole model

So far, we have presented the representation of a single dipole from a finite distribution of current. Based on these results,
we now formulate an iterative method to compute the magnetic interactions of a collection of paramagnetic spheres. First,
suppose the beads have initial dipole moments mðnÞ

0 for n ¼ 1; . . . ;N. These initial dipole moments may be those due to the
external field or those from a previous timestep or iteration. Now, to motivate the method, we recall (18) and rewrite it as
mðnÞ ¼ 4
3
pa3veff H0 þ

XN

k¼1;k6¼n

Z
HðkÞdipðx� YðkÞÞdðx� YðnÞÞd3x

 !
: ð38Þ
In the mutual finite-dipole model, the dipole moment of bead n is given by
mðnÞ ¼ 4
3
pa3veff H0 þ

XN

k¼1;k6¼n

Z
HðkÞD ðx� YðkÞÞDðx� YðnÞÞd3x

 !
: ð39Þ
In (39), the fields of the other beads are induced by moments mðnÞ
0 and given by (37). As a result everything on the right

hand side of (39) is known. Also, the delta-function in the convolution is replaced by the Gaussian distribution (29). There-
fore, rather than using the value of the field at a particle’s center, a locally spatially averaged value of the field is considered
in the computation of that particle’s dipole moment.

In contrast to a singular point dipole, the field of a finite-dipole is finite and well defined at the dipole’s location. We may
then write
mðnÞ ¼ 4
3
pa3veff

Z
ðHtotðxÞ �HðnÞD ðx� YðnÞÞÞDðx� YðnÞÞd3x

� �
; ð40Þ
where
HtotðxÞ ¼ H0 þ
XN

k¼1

HðkÞD ðx� YðkÞÞ: ð41Þ
Since the volume average of a particle’s own field is
Z
HðnÞD ðx� YðnÞÞDðx� YðnÞÞd3x ¼ mðnÞ

0

12ðpr2Þ3=2 ; ð42Þ
we arrive at
mðnÞ ¼ 4
3
pa3veff

Z
HtotðxÞDðx� YðnÞÞd3x� mðnÞ

0

12ðpr2Þ3=2

 !
: ð43Þ
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Using the finite current density representation, the force on bead n is
FðnÞ ¼ l0

Z
JðnÞD � ðHtot �HðnÞD ðx� YðnÞÞd3x: ð44Þ
We may eliminate the need to subtract the self-induced forces since, in fact,
Z
JðnÞD �HðnÞD d3x ¼ 0: ð45Þ
Therefore, the force on bead n is simply
FðnÞ ¼ l0

Z
JðnÞD �Htot d3x: ð46Þ
Summarizing the above results, the numerical procedure with the mutual finite-dipole model is as follows:

(1) Using the values of the dipole moments from a previous timestep or iteration, mðnÞ
0 for n ¼ 1; . . . ;N; construct the cur-

rent density distribution
PN

n¼1 JDðx� YðnÞÞ:
(2) Solve r2A ¼ �l0

PN
n¼1 JDðx� YðnÞÞ for the vector potential A and compute H ¼ $� A=l0.

(3) Determine the new dipole moments
mn ¼
4
3
pa3veff

Z
HðxÞDðx� YðnÞÞd3x� mðnÞ

0

12ðpr2Þ3=2

 !
ð47Þ

for n ¼ 1; . . . ;N:

(4) Check dipole moments for convergence. If jmðnÞ �mðnÞ

0 j > � then set mðnÞ
0 ¼mðnÞ and go to Step 1.

(5) If jmðnÞ �mðnÞ
0 j < � then evaluate the forces on the beads
FðnÞ ¼ l0

Z
JDðx� YðnÞÞ �HðxÞd3x ð48Þ

for n ¼ 1; . . . ;N.
The scheme described above can be implemented in variety of ways depending on the number of particles and the bound-
ary conditions. For isolated configurations of few particles, one can construct a local grid for each particle and with the re-
sults (31) and (32) compute the integrals in steps (3) and (5). This method will, however, scale computationally as OðN2Þ. In
situations where many particles need to be considered, or boundaries are present, a fixed mesh over the entire domain can
be constructed and a numerical solution for the vector potential (step (2)) can be determined. The integrals in steps (3) and
(5) can then be computed using values of Htot on nearby mesh points. The cost of computing the total magnetic field can be
considered fixed. The cost of an additional particle is associated with the additional source term and the extra dipole and
force integrations, which results in a method that scales computationally as OðNÞ. With the fixed mesh approach, there is
the restriction that the grid spacing be small enough compared to the characteristic length scale of the distribution, r as dis-
cussed in the following paragraph.

In order to analyze the how well the mutual finite-dipole model represents the mutual dipole model, we consider first
two interacting spheres in a uniform magnetic field. In Fig. 5(a), we plot the dipole moments from the mutual dipole method
and the mutual finite-dipole model using several different values of a=r with the applied field perpendicular to the axis of
separation. Fig. 5(b) shows the dipole moments when the field is parallel to the line of centers. Fig. 6(a) and (b) show the
force computed from (46) as a function of separation for the perpendicular field and the parallel field respectively. Provided
the finite current distributions are sufficiently localized, the dipole moments and the forces for both configurations are
nearly identical to those given by the mutual dipole method. We also notice that even though the field near the surface
of a sphere is not fully resolved when a=r ¼ 3, the particle interactions are well accounted for. The results presented here
are for l=l0 ¼ 2. Higher permeability ratios were also considered but not plotted here since the relative error for a choice
of a=r is not affected by this ratio.

Additionally, we have considered how well the mutual finite-dipole model recovers the dipolar interactions in a linear
chain of particles. In this example, successive particles are in contact and the chain is aligned with the applied field, with
l=l0 ¼ 2 or v ¼ 1. Table 1 shows the dipole moments for each bead in the chain for a range of values for a=r. For values
of a=r P 2 the resulting dipole moments compare well with those given by the mutual dipole model. To obtain an accurate
quantification of magnetic force on each bead, see Table 2, requires a more localized distribution with values of a=r > 2:5
yielding good estimates. It should be noted that the mutual dipole model underestimates the actual interaction forces be-
tween the particles due to the neglect of higher-order interaction effects. This is discussed in the next section.

In the force-coupling method (FCM) [28], the ratio a=r is chosen to exploit the self-induced velocity of a particle subject
to an external body force by matching the local spatial average of this field to the settling velocity of the particle. This specific
choice further gives the proper balance between the work done on the fluid and the viscous dissipation. For the mutual fi-
nite-dipole model, the self-induced moment can not be exploited and must, in fact, be removed. As a result, there is no
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Table 1
The magnitude of the magnetic dipole moment, jmj, for each bead in an eight-bead chain with the chain axis aligned with the applied field, jH0 j ¼ 1 and v ¼ 1

Bead Mutual dipole a=r ¼ 3=2 a=r ¼ 2 a=r ¼ 5=2 a=r ¼ 3

1 3.412583 3.358042 3.400500 3.411038 3.412467
2 3.627707 3.524409 3.604898 3.624793 3.627488
3 3.667280 3.558145 3.643083 3.664185 3.667074
4 3.677247 3.566890 3.652764 3.674115 3.677012

The dipole moments are computed using the mutual dipole method and the finite-dipole method with various values of a=r.
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Table 2
The magnetic forces, F=l0, on each bead in an eight-bead chain with the chain axis aligned with the applied field, jH0 j ¼ 1 and v ¼ 1

Bead Mutual dipole a=r ¼ 3=2 a=r ¼ 2 a=r ¼ 5=2 a=r ¼ 3

1 0.399889 0.212705 0.338805 0.388854 0.398762
2 0.059832 0.041282 0.053863 0.058807 0.059732
3 0.014335 0.010425 0.013117 0.014129 0.014315
4 0.003119 0.002323 0.002874 0.003078 0.003115

The forces are computed using the mutual dipole method and the finite-dipole method with various values of a=r.
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preferred choice of a=r and its value may be chosen for numerical accuracy or efficiency. As a=r increases, the dipole mo-
ments and the forces given by the finite-dipole model become more accurate, however, the spatial grid size must decrease to
resolve the more localized Gaussian. The goal is to choose a value that correctly reproduces the point dipole interactions up
to a certain distance but requires a reasonable number of grid points per particle radius. In the previous section, we saw that
the force computed using the mutual dipole model begins to diverge from the exact calculation at a separation of three radii.
With values a=r ¼ 2:5—3:0, the mutual finite-dipole model resolves the force at this separation. Also, with this range of val-
ues of a=r, the resulting dipole moments agree quite well with the mutual dipole model at any separation. This is important
for the inclusion of higher multipoles to be effective when using the procedure that will be described in Section 4.2.

3.3. Computational effort

In the standard mutual dipole model, the number of equations in (18) grows as the number of particles increases. An
advantage of the finite-dipole model is its computational scalability. To include additional beads, one needs only to add
the associated current density distribution of the extra bead to the equation for the vector potential. To illustrate how the
computational cost increases as we increase the number of particles, we conducted several simulations of the aggregation
of paramagnetic beads from a homogeneous random suspension in response to an external magnetic field. In addition to the
magnetic forces we include hydrodynamic and solid-body contact forces. The Reynolds number associated with the motion
of these particles is low, Re � 10�4, and the density of the particles is close to the density of the surrounding fluid, qp � qf . At
each instant of time, the forces on each particle must balance
FðnÞhydro þ FðnÞmag þ FðnÞbar ¼ 0: ð49Þ
A short-range, pairwise barrier force between particles is included to represent solid-body contact. The force on particle-n
from particle-m is zero if the distance between the particle centers rnm ¼ jxnmj, where xnm ¼ YðnÞ � YðmÞ, exceeds a cut-off dis-
tance Rref . For shorter separations, the barrier force is of the form
Fbar
nm ¼ �

Fref

2a
R2

ref � r2
nm

R2
ref � 4a2

 !4

xnm: ð50Þ
The force balance (49) establishes a low Reynolds number mobility problem where, after determining the magnetic and bar-
rier forces, the motion of the fluid and the particles is computed using FCM. In FCM, the forces the particle phase exerts on
the fluid are represented by a finite force multipole expansion in the Stokes equation, see [28,29],
$p� gr2u ¼
XN

n¼1

FðnÞextDFCMðx� YnÞ; ð51Þ

$ � u ¼ 0; ð52Þ
where FðnÞext ¼ FðnÞmag þ FðnÞbar and DFCM is a Gaussian envelope, with the length scale rFCM set as a=rFCM ¼
ffiffiffiffi
p
p

. Aside from the eval-
uation of the magnetic forces, these procedures are similar to those used previously [18].

In this simulation, the boundary conditions in each direction are periodic so a Fourier collocation method with 1443 grid
points is used to solve for the magnetic vector potential. The hydrodynamic interactions are given by FCM and a Fourier col-
location method with 963 grid points provides the solution to the Stokes equations. A different grid spacing is used for the
magnetic field as opposed to the flow field since the length scale of the Gaussian in the finite-dipole model is two-thirds that
of FCM. As the barrier forces vanish beyond separation distances of Rref , a linked list algorithm is employed to handle effi-
ciently the pairwise interactions. The simulation is run for 100 timesteps on two 2.4 GHz Intel Xeon processors and the time
needed to update the dipole moments is recorded. In the finite-dipole computations, it typically required 2–3 iterations per
timestep for the magnetic dipole moments to converge. This time is plotted in Fig. 7. When there are few particles, the sim-
ulation time remains constant as the time required to distribute the current sources on the grid is less than the fixed time
associated with solving the equations. In this regime, a point dipole approach may be computationally advantageous as the
cost of solving the Poisson equations is likely to exceed the cost of building and solving the 3N � 3N linear system of equa-
tions to determine the dipole moments. As we increase the number of beads, however, the computational time required to
distribute the sources exceeds the solve time and we observe that the computational work scales as OðNÞ. It is these
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situations where large numbers of particles are involved, employing the finite-dipole is appropriate and can out perform tra-
ditional point dipole methods.

4. Incorporating higher multipoles

Until now, we have discussed various dipole models to account for the magnetic interactions of paramagnetic beads. As
shown in Fig. 1(a) and (b), the dipole models provide reliable estimates for the inter-particle forces at larger separation dis-
tances but become inaccurate when the gap between particles is less than half a radius. In this section, we present the exact
two-body calculation for the pairwise interaction of particles. The results will be then used to include the effects of higher-
order multipole terms in a refined dipole model.

4.1. Solution to the two-body problem

Consider the general problem described in Section 2 with N ¼ 2, Yð1Þ ¼ ð0;0; cÞ, Yð2Þ ¼ ð0;0;0Þ and the applied magnetic
field resolved into components parallel to and orthogonal to the line of centers, H0 ¼ H?x̂þ Hkẑ. The problem is depicted
in Fig. 8 and is based on that performed in [30]. It is also a specific case considered in [15]. As stated earlier, the solution
to this problem is given by a sum of spherical harmonics. For this problem we have
x

z

μ

0H

μ μ0

a

a
c

Fig. 8. The two body problem.
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UðnÞin ¼
X1
l¼0

X1

m¼0

aðnÞlm rl
nPm

l ðcos hnÞ cos m/; ð53Þ

Uout ¼ �H?x� Hkzþ
X2

n¼1

X1
l¼0

X1

m¼0

bðnÞlm

Pm
l ðcos hnÞ

rlþ1
n

cos m/; ð54Þ
where ðrn; hn;/Þ are the spherical coordinates of a system whose origin coincides with the center of sphere n. The associated
Legendre functions are defined as
Pm
l ðcos hÞ ¼ ð�1Þmð1� cos2 hÞm=2 dm

dðcos hÞm
Plðcos hÞ: ð55Þ
In order to find the coefficients aðnÞlm and bðnÞlm that satisfy boundary conditions (7) and (8), we must express the general solu-
tion in terms of a single coordinate system. To accomplish this task, we employ the Hobson formula [30,15] which state
Pm
l ðcos h1Þ

rlþ1
1

¼
X1
s¼m

ð�1Þsþmð�1Þlþs lþ s
sþm

� �
rs

2

clþsþ1 Pm
s ðcos h2Þ; ð56Þ

Pm
l ðcos h2Þ

rlþ1
2

¼
X1
s¼m

ð�1Þsþm lþ s

sþm

� �
rs

1

clþsþ1 Pm
s ðcos h1Þ: ð57Þ
On substituting the general solution into the boundary conditions, applying the Hobson formula, and eliminating aðnÞlm we find
that for each m ¼ 0;1
l
l0

lþ lþ 1
� �

bð1Þlm þ
X1
s¼1

bð2Þsmð�1Þlþm lþ s

sþm

� �
a2lþ1

clþsþ1

l
l0

l� l
� �

¼ d1ja3 1� l
l0

� �
d1mH? � d0mHk
	 


; ð58Þ

l
l0

lþ lþ 1
� �

bð2Þlm þ
X1
s¼1

bð1Þsmð�1Þlþsð�1Þlþm lþ s

sþm

� �
a2lþ1

clþsþ1

l
l0

l� l
� �

¼ d1ja3 1� l
l0

� �
d1mH? � d0mHk
	 


: ð59Þ
By including only a finite number of multipoles, l ¼ 0; . . . ; L, (58) and (59) establish two 2L� 2L linear systems of equa-
tions. Specifically, for each m ¼ 0;1 we need to solve
ð60Þ
where
bð1Þm ¼ ðb
ð1Þ
1m;b

ð1Þ
2m; . . . ;bð1ÞLmÞ

T
; ð61Þ

bð2Þm ¼ ðb
ð2Þ
1m;b

ð2Þ
2m; . . . ;bð2ÞLmÞ

T
; ð62Þ

q0 ¼ ðHka3ð1� l=l0Þ;0; . . . ;0ÞT; ð63Þ
q1 ¼ ð�H?a3ð1� l=l0Þ; 0; . . . ;0ÞT ð64Þ
and the L� L matrices are
Xij ¼ dij i
l
l0
þ iþ 1

� �
; ð65Þ

Dij;m ¼ ð�1Þiþm i
l
l0
� i

� �
iþ j

jþm

� �
a2iþ1

ciþjþ1 ; ð66Þ

Cij;m ¼ ð�1ÞiþjDij;m: ð67Þ
After solving for the bðnÞlm , the contribution of the field from the particles in the fluid is
Hr ¼
XL

l¼0

X1

m¼0

ðlþ 1Þbð1Þlm

Pm
l ðcos h1Þ

rlþ2
1

� bð2Þlm

XL

s¼m

ð�1Þsþm lþ s

sþm

� �
s

rs�1
1

clþsþ1 Pm
s ðcos h1Þ

" #
cos m/; ð68Þ

Hh ¼ �
XL

l¼0

X1

m¼0

bð1Þlm

rlþ2
1

dPm
l ðcos h1Þ

dh1
þ bð2Þlm

XL

s¼m

ð�1Þsþm lþ s

sþm

� �
rs�1

1

clþsþ1

dPm
s ðcos h1Þ

dh1

" #
cos m/; ð69Þ

H/ ¼
XL

l¼0

bð1Þl1

rlþ2
1 sin h1

P1
l ðcos h1Þ þ bð2Þl1

XL

s¼1

ð�1Þsþ1 lþ s

sþ 1

� �
rs�1

1

clþsþ1 sin h1
P1

s ðcos h1Þ
" #

sin /: ð70Þ
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In (68)–(70), the coordinate system is ðr1; h1;/Þ, but using the Hobson formula, the field can also be expressed in terms of
ðr2; h2;/Þ. With the field known, the Maxwell stress tensor, (10), can be formed and the force is then
a

Fig. 9.
l=l0 ¼
Fx ¼
Z

rn¼a
Txr dS; ð71Þ

Fy ¼ 0; ð72Þ

Fz ¼
Z

rn¼a
Tzr dS: ð73Þ
The simple form of the azimuthal dependence of the field allows the integration over / to be evaluated analytically while
the polynomial dependence of the field on cos h makes Gaussian integration viable for the integration over h.

In the calculation, the infinite summation is truncated at a finite value, L. It is important that this value be large enough to
include the important multipoles, but not so large that the matrix inversion becomes cumbersome. Fig. 9(a) and (b) show the
value of the force as a function of L between two spheres in contact with the axis of separation parallel to the applied field
with l=l0 ¼ 2 and l=l0 ¼ 5 respectively. When l=l0 ¼ 2, having L ¼ 10 resolves nearly all the force where as a value of
L ¼ 20 is needed to provide the same level of accuracy if l=l0 ¼ 5.

4.2. Inclusion of two-body effects into dipole models

We have already seen that as two bodies come into contact, the various dipole models fail to give an accurate represen-
tation of the magnetic force between a pair of particles. We, therefore, would like to incorporate higher order multipoles to
yield correct estimates of the near contact force. One way to accomplish this is to compute the pairwise interactions using a
higher multipole representation of the interactions [23]. While computing the forces this way will give a more accurate esti-
mation of the near contact force, this method will not produce the correct asymptotic results for a many-body problem
where the particles are widely separated. Consequently, we seek to develop a method that blends an N-body dipole calcu-
lation to determine the many body interactions and two-body, higher multipole calculations between particles that are suf-
ficiently close. Such a model will provide the necessary adjustments for the near contact interactions while preserving the
correct far-field forces given by the dipole computation. The method we propose to include the near field magnetic interac-
tions is described here considering an ensemble of N spheres each of permeability l and radius a.

4.2.1. Step 1: Far-field/dipole calculation
First, one must perform the N-body dipole calculation obtaining the resulting dipole moments mðnÞ and magnetic forces

FðnÞmag on each bead n. This computation can be handled using either the mutual dipole or the mutual finite-dipole method
depending on the choice of the user. The procedure to include the higher order multipoles is general and available to both
methods.
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4.2.2. Step 2: Determine if c < Rc

Since higher multipoles become important only near contact, we introduce Rc which defines the maximum inter-bead
separation distance where higher multipoles will be included in the force calculations. Therefore, after computing the dipole
interactions, one must determine if a pair of particles are close enough such that higher multipoles should be considered. In
our simulations this is handled using a linked list algorithm [31] to avoid pairwise checking over all N particles and checking
if the separation distance c ¼ jYðpÞ � YðqÞj is less than Rc.

4.2.3. Step 3: Compute higher order multipoles
For each pair whose separation distance is less than Rc we perform the two-body calculation (60) to determine the vectors

bð1Þm and bð2Þm for m ¼ 0;1 which hold the coefficients for the L multipoles. In the two-body calculation, the axes are aligned
such that
ẑ ¼ YðpÞ � YðqÞ

c
; ð74Þ

x̂ ¼ H0 � ðH0 � ẑÞ
jH0 � ðH0 � ẑÞj

; ð75Þ

ŷ ¼ ẑ� x̂; ð76Þ
so
Hk ¼ H0 � ẑ; ð77Þ
H? ¼ H0 � x̂: ð78Þ
This calculation can be performed on the fly at each time step, as needed, since only two 2L� 2L linear systems need to be
solved for each pair, and L ¼ 10 for l=l0 ¼ 2 and L ¼ 20 for l=l0 ¼ 5.

4.2.4. Step 4: Adjust two-body dipole moments to include far-field effects
Before computing the interparticle force, we first modify the dipole coefficients from the two-body calculations bðpÞ;2B

1m and
bðqÞ;2B

1m to include far-field effects. This allows information from the far-field to influence the two-body force calculation. With
the relations
bðnÞ;dip
10 ¼mðnÞ � ẑ

4pa3 ; ð79Þ

bðnÞ;dip
11 ¼ �mðnÞ � x̂

4pa3 ð80Þ
we determine the new dipole coefficients
bðnÞ1m ¼ bðnÞ;2B
1m þ bðnÞ;dip

1m � bðnÞ;2Bdip
1m ð81Þ
for each m ¼ 0;1. In (81), bðnÞ;2Bdip
1m is given by a dipole calculation where only the interactions of the two bodies are consid-

ered. This value corresponds to the outer expansion of the inner solution and is the overlap of the two solutions that must be
subtracted to avoid it being counted twice.

4.2.5. Step 5: Determine the resulting field
With the modified coefficients bðnÞlm we now determine the field in the fluid phase (68)–(70). In general, one needs to add

the out of plane component of the field due to the out of plane component of the dipole moment from the far-field
calculation
H ¼ �$Uy ¼ �
mðnÞ � ŷ
4pa3

P1
1ðcos hÞ sin /

r2 : ð82Þ
4.2.6. Step 6: Form and evaluate the Maxwell stress tensor
Once the components of the field are found, the Maxwell stress tensor (10) can be determined and evaluated over the

surface of each particle to obtain the force (11), FðnÞ;2B
mag .

4.2.7. Step 7: Correct the total magnetic force
The total magnetic force on a given particle must now be adjusted to replace the magnetic force between particles p and q

with the corrected force FðpqÞ;2B
mag . The total force is
FðpÞ ¼ FðpÞdip þ Fpq
2B � Fpq

dip2B; ð83Þ

FðqÞ ¼ FðqÞdip � Fpq
2B þ Fpq

dip2B; ð84Þ
where Fpq
dip2B is the dipolar force between particles p and q.
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4.3. Example results

To test the effectiveness of this procedure, we consider several three-particle configurations with different values of l=l0.
Two-particle problems are not considered since the inclusion procedure, described above, already gives exact results for the
interparticle force. For the three-body problems, the interparticle forces are computed in turn from the mutual dipole meth-
od, a combination of simple pairwise two-body calculations [23] and the inclusion model. These results are compared to the
exact forces. The results of the two-body calculation are obtained by summing the forces from the two-body calculation for
each pair in turn [23]. Fig. 10(a) and (b) show the force on a bead due to a collinear pair of beads in contact. The axis of sep-
aration is aligned with the axis of the doublet pair and the applied magnetic field is taken in turn to be perpendicular and
parallel to this direction. The magnetic susceptibility is v ¼ 1 and l=l0 ¼ 2. For these axisymmetic configurations, we extend
the two-body spherical harmonic calculation to determine the exact magnetic forces on three beads. For l=l0 ¼ 2, we used
L ¼ 20 multipoles in this computation. When the magnetic field is aligned with the axis of the three-particle chain the results
of the inclusion model agree well with the exact values. In this configuration, the forces are attractive and the agreement
indicates how well the models can characterize the yield behavior of the chain structures commonly found in MR fluids.
When the field is perpendicular to the chain, the forces are repulsive and the particles tend to separate. The error from
the inclusion model is small and is a significant improvement over the estimates from the other methods. In Fig. 11(a)
and (b), the same bead configurations are used, but now l=l0 ¼ 5. Here, a L ¼ 30 multipole calculation provided the exact
force values.

The trends in the discrepancies in the differences between the models and the exact computations are the same for both
permeability ratios but more dramatic in the case of l=l0 ¼ 5 where the higher multipoles are more influential. In each case,
the mutual dipole method performed well at large separations, but diverged from the exact force near contact. Simply adding
the forces from pairwise two-body calculations gives a better estimate of the force near contact and a good estimate at any
separation when the chain axis is perpendicular to the applied field. This method does, however, suffer from not being able
to provide an accurate characterization of the far-field force where the chain axis is aligned with the applied field. For the
higher permeability ratio, the relative error at contact is still large at 15% (Fig. 11(b)). In each of these three-particle config-
urations and for both permeability ratios, we see the inclusion of the higher multipoles from the two-body calculation with
the many-body dipole model provides the force enhancement needed to resolve the near contact interactions while also
ensuring the proper asymptotic behavior as the separation increases. Of the four cases considered here, the largest relative
error is approximately 5% (Fig. 11(b)).

The inclusion model may be applied to the example of a collinear chain of eight paramagnetic beads in contact, previously
considered in Section 3.2, with the applied field aligned with the chain. The resultant magnetic forces on each particle in the
chain are evaluated using the different methods and listed in Table 3. The results are compared to the exact values. The inclu-
sion procedure provides a good quantification of the force on each particle resolving the underestimate associated with the
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Fig. 10. Force on a bead due to a doublet with l=l0 ¼ 2. The data are normalized by the value of the exact solution at contact. (a) The applied field is
perpendicular to the separation axis. (b) The applied field is parallel to the separation axis. The inset sketch is not drawn to scale and depicts the
configuration of the beads relative to the applied field and the direction of the measured resulting force. In the plots: (� � �) two-body calculation; (– – –)
mutual dipole; (—) inclusion model; (h) exact solution.
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Fig. 11. Force on a bead due to a doublet with l=l0 ¼ 5. The data are normalized by the value of the exact solution at contact. (a) The applied field is
perpendicular to the separation axis. (b) The applied field is parallel to the separation axis. The inset sketch is not drawn to scale and depicts the
configuration of the beads relative to the applied field and the direction of the measured resulting force. In the plots: (� � �) two-body calculation; (– – –)
mutual dipole; (—) inclusion model; (h) exact solution.

Table 3
The resultant magnetic forces, F=l0, on each bead in an eight-bead chain with the chain axis aligned with an applied field of unit magnitude, jH0 j ¼ 1

Bead Fixed dipole Mutual dipole Two body Inclusion method Exact

1 0.318540 0.399889 0.469333 0.514543 0.507733
2 0.023898 0.059832 0.024279 0.063490 0.056234
3 0.005258 0.014335 0.005279 0.015035 0.013690
4 0.001150 0.003119 0.001153 0.003260 0.003052

The forces are computed using different models described here. Only the forces on beads 1–4 are provided since the forces on 5–8 are equal and opposite to
these values.
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mutual dipole method at the end, and the pairwise two-body calculation in the middle. The minimum force, F, required to
break a chain of N beads at the point between beads n and nþ 1 is given by the sum of the resultant magnetic forces
F ¼
XN

m¼nþ1

FðmÞk ; ð85Þ
where k denotes the force component along the axis of the chain. This sum achieves its maximum value at the center of the
chain, which in the case of N ¼ 8 considered here is between beads number 4 and 5. It should be noted that for this specific
configuration the resultant force in the middle of the chain is dominated by the dipole interactions.

The inclusion model performs exceptionally well when the particles are distributed along a line. Problems arise, however,
when the configuration is no longer collinear. These configurations are present at high volume fractions [32] or when the
suspension is subject to a rapidly rotating field [17]. In Fig. 12, a triangular configuration is subject to a uniform field. The
forces are attractive. The results are compared with the exact force taken from [15]. In this case, the 40% error in the force
at contact is reduced to 10% with the inclusion model. Although the inclusion model provides a better approximation of the
force than the other models, its performance is not as good as it was in the previous cases. Extending the far-field calculation
to include quadrupole moments may be a way to improve this result.

5. Summary and discussion

The purpose of this study is to develop a method to estimate accurately and efficiently the magnetic forces between para-
magnetic particles that is applicable for systems of thousands of particles. An accurate quantification of the interparticle
forces is necessary to determine the rheological properties of MR fluids or the performance of micro-fluidic devices, where
unsteady magnetic fields or shear flows introduce viscous stresses on the self-assembled chains. Accurately describing the



2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

c/a

F

H0

F

Fig. 12. Force on a bead in a triangular arrangement. The configuration is depicted in the drawing with the bead in question indicated. The data are
normalized by the value of the exact solution at contact. The exact computation is provided by [15]. The inset sketch is not drawn to scale and depicts the
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yield strength and deformation of the structure while considering a large number of particles are necessary to determine the
properties of the bulk suspension.

In the preceding sections, we have presented and described a finite-dipole model which resolves the many-body dipole
interactions in MR fluids. In this model, the induced magnetization of a particle is represented as a localized Gaussian dis-
tribution of current, with characteristic length scale r, that is then a source term in the Poisson equation for the vector po-
tential of the magnetic field. This equation can be solved using any standard numerical solver, whether it be a finite
difference or spectral code, and may also accommodate different boundary conditions on the domain. Further, the results
present here can be used in the formulation of a particle-mesh Ewald method [33] if one is interested in recovering the
point-dipole model. The computational work associated with the finite-dipole model comprises a fixed cost associated with
solving the Poisson equation and an OðNÞ growth associated with distributing the current sources over the grid points. A
fixed numerical mesh is commonly used for simulating the fluid dynamics of a suspension of paramagnetic particles and
the extra cost of solving the additional Poisson equation represents a modest increase in the overall computational effort.
The choice of a=r is discussed in the context of providing an accurate description of the force between point dipoles while
ensuring the number of grid points in a particle radius is not too large.

In order to capture the near-field interactions of particles, the mutual dipole and finite dipole models have been modified
to include locally higher-order multipole terms through a pairwise interaction scheme. This is based on the exact solution for
two paramagnetic particles placed in a locally uniform magnetic field. This inclusion scheme is self-consistent in that it pre-
serves both the correct far-field and near-field expansion limits, and removes the overlapping terms of the expansions.
Although the inclusion scheme is intended for use with the finite-dipole model, its formulation is general and available
for use in conjunction with other dipole or higher-order multipole models. The procedure yields very accurate solutions
to collinear three-body problems. The scheme is not as accurate when considering other configurations but represents a sig-
nificant improvement over existing methods. Further improvements may be possible by including more information from
the far field (i.e. quadrupole moments). Introducing nonuniform magnetic fields into the two-body, near-field model would
significantly increase the complexity of the pairwise computations.

Although only the interactions between particles of the same size and linear magnetic properties in a homogeneous sus-
pension are considered, the methods presented here can readily be extended to more general situations. The finite-dipole
method consists of representing the individual dipole moments as local distributions of current density, numerically deter-
mining the total magnetic field as a result of these sources and then using an interative process to find the induced dipole
moments based on the local, volume-averaged magnetic field. By allowing a or veff in (47) to vary between particles, the fi-
nite-dipole method can employed to address suspensions where there is dispersity in particle radius or magnetic suscepti-
bility. Additionally, when solving for the magnetic field (see step 2 in Section 3.2), a variety of boundary conditions can be
considered. For example, simulations of magnetic particles in channels may incorporate the magnetic properties of the chan-
nel walls or the magnetic field may be prescibed at the surface. One may also incorporate nonlinear constitutive models into
this dipole calculation. Rather than having the dipole moments depend linearly on the volume average of the magnetic field
in (47), a nonlinear function based on the material properties may be used.
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The inclusion of higher order multipoles may also be adapted to more general situations. For example, where the particles
in the suspension have different radii or magnetic susceptibilities, the boundary conditions of the two-body calculation can
be modified to incorporate these changes. The expressions (58) and (59) will be changed accordingly with the two different
values of l and/or a now being considered. The inclusion procedure can then be carried out in the way described in the pre-
vious section. To include the higher-order effects of particle–wall interactions, one must solve Laplace’s equation with the
appropriate boundary conditions at the surfaces of the bead and wall. Provided the dipole moments from the far-field cal-
culation are incorporated into the coordinate system employed in the particle/wall calculation and the far-field force be-
tween the particle and wall is known, the inclusion procedure may be used here for the particle–wall interaction.
Nonlinear effects might also be included into the higher-order multipole model using a ‘linearly susceptible-perfectly satu-
rated’ model. In this model, if the magnitude of the local magnetic field is below the saturation value, the material behaves
linearly where as if the magnitude of the local magnetic field is above the saturation value, the multipoles will be those given
by the magnetic field at saturation.
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